You can edit almost every page by Creating an account. Otherwise, see the FAQ.

量子コンピュータ

提供:EverybodyWiki Bios & Wiki
移動先:案内検索

量子コンピュータ (りょうしこんぴゅーた、英: quantum computer)は量子力学の原理を計算に応用したコンピュータ。古典的なコンピュータで解くには複雑すぎる問題を、量子力学の法則を利用して解くコンピュータのこと。量子計算機とも。極微細な素粒子の世界で見られる状態である重ね合わせや量子もつれなどを利用して、従来の電子回路などでは不可能な超並列的な処理を行うことができると考えられている。マヨラナ粒子を量子ビットとして用いる形式に優位性がある。

概説[編集]

2022年時点でおよそ数十社が量子コンピュータ関連の開発競争に加わっており、主な企業としては、IBM (IBM Quantum)、Google Quantum AI、Microsoft、Intel、AWS Braket、Atos Quantumなどが挙げられる。

研究成果の年表については、英語版のen:Timeline_of_quantum_computing_and_communicationを参照のこと。

量子コンピュータは30年前には単なる理論上のものでしかなかったが、IBM Quantum社は、すでに現実に量子ハードウェアを製作しており、数千人の開発者がそれを利用できる状態になっている。IBM Quantumは量子プロセッサを定期的に配布している。

量子計算を「量子ゲート」を用いて行う方式のものについての研究がいまは最もさかんであるが、他の方式についても研究・開発は行われている。

いわゆる電気回路による従来の通常の2値方式のデジタルコンピュータ(以下「古典コンピュータ」)の素子は、情報について、なんらかの手段により「0か1」のような排他的な2値のいずれかの状態だけを持つ「ビット」(古典ビット)により扱う。それに対して量子コンピュータは、「量子ビット」 (英: qubit; quantum bit、キュービット) により、量子状態の重ね合わせ(量子波動関数)によって情報を扱う。ここで言う重ね合わせとは「0,1,重なった値」という第三の値と言う意味ではなく、両方の値を一定の確率で持っており、観測時にどちらかに確定すると言うものである。

n量子ビットがあればの状態を同時に計算し、個の重ね合わされた結果を得る事が出来る。しかし、重ね合わされた結果を観測しても確率に従ってランダムに選ばれた結果が1つ得られるだけであり、古典コンピュータに対する高速性は得られない。高速性を得るためには欲しい答えを高確率で求める工夫を施した量子コンピュータ用のアルゴリズムが必須である。もしも数千量子ビットのハードウェアが実現したならば、この量子ビットの重ね合わせを状態を利用することで、量子コンピュータは古典コンピュータでは到底実現し得ない規模の並列コンピューティング(計算速度の量子超越性)を実現すると言われている。

量子コンピュータの能力については、理論上の話(予測や予測に関する議論)と、製作中の量子プロセッサの製作者が考えている予定値と、すでに製作された現実の機械についての実測値がある。実現した値については、やはり上述の英語版の年表が詳しい。(当記事の後半の#計算能力や#実際の節は、内容が更新がされておらず、かなり古い内容なので、あまり参考にはならない。)

将来に量子コンピュータの販売が行われるようになれば、初期の発展段階で量子コンピュータの重要な特許を多く取得した会社が莫大な収益や利益をあげると予想され、後手にまわった側は、特許を保有する側に対して膨大な特許実施使用料を支払う立場になったり、競争に負けて会社が衰退してしまう可能性もある。そのため2022年の時点では上で説明した数社だけではなくて、ほかにもあわせて数十社ほどが量子コンピュータ関連の開発を競い合っている。

なお単なるコンピュータの利用者になるだけのつもりの人にとっての「目先の利用価値」について言えば、2022年の時点ではスーパーコンピュータや普通のPCの方が利用価値が高いといえる(量子コンピュータが実用的な問題の処理に本格的に使えるようになるまでには「もうしばらく」時間がかかると考えられている)。

歴史[編集]

1980年代[編集]

量子コンピュータの歴史は、1980年に ポール・ベニオフ(英語版) が量子系においてエネルギーを消費せず計算が行えることを示したことに端を発し、1982年、ファインマンも量子計算が古典計算に対し指数関数的に有効ではないかと推測している。これらに続き、1985年、ドイッチュは、「量子計算模型」と言える量子チューリングマシン(英語版)を定義し、1989年に量子回路を考案した。

1990年代[編集]

1992年に、ドイッチュとジョサ(英語版)は、量子コンピュータが古典コンピュータよりも速く解ける問題でドイッチュ・ジョサのアルゴリズムを考案した。 1993年に、ウメーシュ・ヴァジラーニ(英語版)と生徒のEthan Bernsteinは、万能量子チューリングマシン(英語版)と量子フーリエ変換(英語版)のアルゴリズムを考案した。

1994年にピーター・ショアは、実用的なアルゴリズム『ショアのアルゴリズム(英語版)』を考案し、量子コンピュータの研究に火をつけた。これは、ヴァジラーニらの量子フーリエ変換や、同年のSimonの研究を基礎に置いている。古典コンピュータでは現実的な時間では解けないと考えられている素因数分解は、量子コンピュータに特有であるこのショアのアルゴリズムでは理論上極めて短時間で解けることになるので、素因数分解の困難さを暗号の安全性の根拠としているRSA暗号は,もしも実用的な量子コンピュータが実現されたならば容易に破られることを示した。

1995年に、アンドリュー・スティーンやピーター・ショアにより、量子誤り訂正のアルゴリズムが考案された。 1996年に、ロブ・グローバー(英語版)により、その後、様々なアルゴリズムに応用されるグローバーのアルゴリズムが考案された。同年、セルジュ・アロシュは、実験的観測によって量子デコヒーレンスを証明し、  量子デコヒーレンスが量子コンピュータ実現への障害となることが実証された。 1997年に、Edward FarhiとSam Gutmannにより、量子ウォーク(Continuous-time quantum walk、略称: CTQW)が考案された。1998年に、量子コンピュータ用のプログラミング言語である、QCL (Quantum Computation Language) の実装が公開された。

また西森秀稔による、量子焼きなまし法(量子アニーリング法)の提案もこの時代であった。

2000年代[編集]

ハードウェア開発に大きな進展があり、2008年にイオントラップの専門家デービッド・ワインランドは、個々のイオンをレーザー冷却して捕捉することが出来ることを示し、個々の量子もつれ状態にあるイオンをマニピュレーションする、トラップド・イオン量子コンピュータの研究が進展した。

ショアのアルゴリズムは、2001年に核磁気共鳴により、2007年に量子光学により、2009年に光集積回路により15の素因数分解 (=3*5) が実装された。

2010年代[編集]

2011年に突如として、カナダの企業D-Wave Systemsが量子コンピュータ「D-Wave」の建造に成功したと発表した。D-Waveはこの記事の多くの部分で説明している量子ゲートによるコンピュータではなく、量子焼きなまし法による最適化計算に特化した専用計算機である。発表当初のものは128量子ビットであった。D-Waveが本当に量子コンピューティングを実現したものか否か、当初は疑う向きも多かったものの、確かに量子コンピューティングによるものとする調査論文が英科学誌ネイチャーに発表され、グーグルを筆頭とするベンチャー企業がD-Waveと協業を開始するなど、2018年1月現在、確実視されて来ている。

2012年、セルジュ・アロシュとデービッド・ワインランドがノーベル物理学賞を受賞した。受賞理由は「個別の量子系に対する計測および制御を可能にする画期的な実験的手法に関する業績」である。

エドワード・スノーデンの開示文書によると、NSAにおいて暗号解読のための実用化が研究されているとされる。

2014年9月米グーグル社はUCSBのJohn Martinisと連携し量子コンピュータの独自開発を開始すると発表した。

2016年5月、IBMは5量子ビットの量子コンピュータをオンライン公開した。デイヴィビッド・コーリー ウォータールー大学教授がテストした結果、ほぼ同じ結果を得ることができた。 2017年5月、IBMは同社の汎用量子コンピュータシステムであるIBM Q向け16量子ビット・プロセッサを開発したとアナウンスした

2019年1月8日、IBMはCESにおいて世界初の商用量子コンピューター(名称:IBM Q System One)を開発したと発表した。

2019年10月23日、グーグルは世界最高速のスーパーコンピューターが1万年かかる計算問題を量子コンピューターSycamoreプロセッサは3分20秒で解くことに成功して量子超越性を世界で初めて実証したと発表し、CEOのサンダー・ピチャイは地球から最初に飛び立った宇宙ロケットに匹敵する成果と述べた。

2020年代[編集]

  • 2020年12月3日(米国時間)、中国の潘建偉が率いる量子研究グループが、独自の量子コンピュータ九章にて量子超越性を達成したことを『サイエンス』誌で発表した。
  • 2021年11月16日 - 東京大学大学院工学系研究科の武田俊太郎准教授と榎本雄太郎助教らの研究チームが、光量子ビットスライサの開発成功を発表した。
  • 2021年12月22日 – NTTや東京大学、理化学研究所などの共同研究で、光子を利用する光量子コンピュータの基幹技術となる「スクィーズド光源」と呼ばれる量子光源を世界で初めて開発したと発表した。実用化すれば従来の量子コンピュータに必要だった大規模な冷却システムが不要となる。
  • 2023年3月27日 - 理化学研究所(理研)は、国産の初号機を開発し、研究者が利用できるサービスを3月27日から始めた。開発は、量子コンピューター研究における日本の第一人者で理化学研究所センター長の中村泰信、および国内企業などからなる研究グループである。理研は、初号機の公開が改善や性能の向上につながると期待している。
    • 理化学研究所センター長、中村泰信の談話
中村は開発の意義について「大規模な量子コンピューターの実現はチャレンジングな課題で、世界的に見てもまだまだハードルが高い技術だ。開発は長いレースになるので、われわれが技術的に貢献する余地は十分ある」と話している。
理化学研究所の初号機は3月27日から本格稼働し、当面は、共同で研究する契約を結んだ大学や企業の研究者に利用してもらい、さらなる改良や関連するソフトウエア開発などを加速させたい考えである。
ただし、公開後もすぐに実用化できるわけではなく、量子ビットは不安定で、計算中に誤りを起こしてしまうため、誤りを自ら訂正するには膨大な量子ビットが必要で、実用化の大きな課題となっている。


Read or create/edit this page in another language[編集]