You can edit almost every page by Creating an account. Otherwise, see the FAQ.

宇宙論

提供:EverybodyWiki Bios & Wiki
移動先:案内検索

宇宙論(うちゅうろん、英: cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。

宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。

「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。

本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。

概論[編集]

古代においても、人間は自身をとりかこむ世界について語っていた。

古代インドではヴェーダにおいて、「無からの発生」や「原人による創造」といった宇宙創生論が見られ、後には「繰り返し生成・消滅している宇宙」という考え方が現れたという。

古代ギリシャにおいては、エウドクソス、カリポス、アリストテレスらが、地球中心説を構築した。アリストテレスは celestial spheres は永遠不変の世界で、エーテルを含んでいる、と考えた。

ヨーロッパ中世のスコラ哲学においても、アリストテレス的な宇宙論が採用された。

ヨーロッパにおいては19世紀ごろまで、宇宙論は形而上学の一分野とされ、自然哲学において扱われていた。

現在の自然科学の宇宙論につながるそれは、天体は地上の物体に働いているのと同じ物理法則に従っていることを示唆するコペルニクスの原理と、それらの天体の運動の数学的理解を初めて可能にしたニュートン力学に端を発している。これらは現在では天体力学と呼ばれている。

現代の宇宙論は20世紀初めのアルベルト・アインシュタインによる一般相対性理論の発展と、非常に遠い距離にある天体の観測技術の進歩によって始まった。

天文学・宇宙物理学における宇宙論は、我々の宇宙自体の構造の研究を行なうもので、宇宙の生成と変化についての根本的な疑問に関連している。

20世紀には宇宙の起源について様々な仮説を立てることが可能になり、定常宇宙論、ビッグバン理論、あるいは振動宇宙論などの説が提唱された。

1970年代ころから、多くの宇宙論研究者がビッグバン理論を支持するようになり、自らの理論や観測の基礎として受け入れるようになった。

現代[編集]

西欧では、(19世紀の学者もそうであったが)20世紀初頭の物理学者らも、宇宙は始まりも終わりもない完全に静的なものである、という見解を持っていた。

現代的な宇宙論研究は観測と理論の両輪によって発展した。

1915年、アルベルト・アインシュタインは一般相対性理論を構築した。アインシュタインは物質の存在する宇宙が静的になるように、自分が導いたアインシュタイン方程式に宇宙定数を加えた。しかしこのいわゆる「アインシュタイン宇宙モデル」は不安定なモデルである。この宇宙モデルは最終的には膨張もしくは収縮に至る。一般相対論の宇宙論的な解はアレクサンドル・フリードマンによって発見された。彼の方程式はフリードマン・ロバートソン・ウォーカー計量に基づく膨張(収縮)宇宙を記述している。

1910年代にヴェスト・スライファーとやや遅れてカール・ウィルヘルム・ヴィルツは渦巻星雲の赤方偏移はそれらの天体が地球から遠ざかっていることを示すドップラーシフトであると解釈した。しかし天体までの距離を決定するのは非常に困難だった。すなわち、天体の角直径を測ることができたとしても、その実際の大きさや光度を知ることはできなかった。そのため彼らは、それらの天体が実際には我々の天の川銀河の外にある銀河であることに気づかず、自分達の観測結果の宇宙論的な意味についても考えることはなかった。

1920年4月26日、アメリカ国立科学院においてハーロー・シャプレーとヒーバー・ダウスト・カーチスが、『宇宙の大きさ』と題する公開討論会を行った。一方のシャプレーは、「我々の銀河系の大きさは直径約30万光年程度で、渦巻星雲は球状星団と同じように銀河系内にある」との説を展開し、対するカーチスは、「銀河系の大きさは直径約2万光年程度で、渦巻星雲は、(この銀河系には含まれない)独立した別の銀河である」との説を展開した。この討論は天文学者らにとって影響が大きく、「The Great Debate」あるいは「シャプレー・カーチス論争」と呼ばれるようになった。

1927年にはベルギーのカトリック教会の司祭であるジョルジュ・ルメートルがフリードマン・ルメートル・ロバートソン・ウォーカーの式を独立に導き、渦巻星雲が遠ざかっているという観測に基づいて、宇宙は「原始的原子」の「爆発」から始まった、とする説を提唱した。これは後にビッグバンと呼ばれるようになった。1929年にエドウィン・ハッブルはルメートルの理論に対する観測的裏付けを与えた。ハッブルは渦巻星雲が銀河であることを証明し、星雲に含まれるケフェイド変光星を観測することでこれらの天体までの距離を測定した。彼は銀河の赤方偏移とその光度の間の関係を発見した。彼はこの結果を、銀河が全ての方向に向かってその距離に比例する速度(地球に対する相対速度)で後退していると解釈した。この事実はハッブルの法則として知られている。ただしこの距離と後退速度の関係は正確には比較的近距離の銀河についてのみ確かめられたものだった。観測した銀河の距離が最初の約10倍にまで達したところでハッブルはこの世を去った。

宇宙原理の仮定の下では、ハッブルの法則は宇宙が膨張していることを示すことになる。このアイデアからは二つの異なる可能性が考えられる。一つは前述の通りルメートルが1927年に発案し、さらにジョージ・ガモフが支持し発展させたビッグバン理論である。もう一つの可能性はフレッド・ホイルが1948年に提唱した定常宇宙モデルである。定常宇宙論では銀河が互いに遠ざかるにつれて新しい物質が生み出される。このモデルでは宇宙はどの時刻においてもほぼ同じ姿となる。長年にわたって、この両方のモデルに対する支持者の数はほぼ同数に分けられていた。

しかしその後、宇宙は高温高密度の状態から進化してきたという説を支持する観測的証拠が見つかり始めた。1965年の宇宙マイクロ波背景放射の発見以来、ビッグバン理論が宇宙の起源と進化を説明する最も良い理論と見なされるようになった。1960年代終わりよりも前には、多くの宇宙論研究者は、フリードマンの宇宙モデルの初期状態に現れる密度無限大の特異点は数学的観念化の結果出てくるものであって、実際の宇宙は高温高密度状態の前には収縮しており、その後再び膨張するのだと考えていた。このようなモデルをリチャード・トールマンの振動宇宙論と呼ぶ。1960年代にスティーヴン・ホーキングとロジャー・ペンローズが、振動宇宙論は実際にはうまくいかず、特異点はアインシュタインの重力理論の本質的な性質であることを示した。

これによって宇宙論研究者の大部分は、宇宙が有限時間の過去から始まったとするビッグバン理論を受け入れるようになった。

ただし現在でも一部の研究者は、ビッグバン理論のほころびを指摘し、定常宇宙論やプラズマ宇宙論などの宇宙論を支持している。



Read or create/edit this page in another language[編集]