スペースシャトル
スペースシャトル(英: Space Shuttle)は、かつてアメリカ航空宇宙局 (NASA) が1981年から2011年にかけて135回打ち上げた再使用をコンセプトに含んだ有人宇宙船である。
もともと「再使用」というコンセプトが強調されていたが、出来上がったシステムは、オービタ部分は繰り返し使用されたが、打ち上げられる各部分の全てが再利用できたわけではなく、外部燃料タンクなどは基本的には使い捨てである。
概要[編集]
初飛行は1981年、2回目の飛行は1982年で、2011年7月の135回目の飛行を最後に退役した。
スペースシャトルは宇宙輸送システム (Space Transportation System, STS) あるいはスペースシャトル計画の一環としてもちいられた。STSの開発とシャトルの飛行は、基本的にアメリカの資金によって行われた。主な使用目的は、NASAのおかれた様々な政治的状況や起こしてしまったシャトルの事故も影響して、およそ10年ごとに大きく変遷してきたが、数々の人工衛星や宇宙探査機の打ち上げ、宇宙空間における科学実験、国際宇宙ステーション (International Space Station, ISS) の建設などである。なおシャトルはNASAによってだけでなく、米国国防総省、欧州宇宙機関、ドイツ等の軌道上実験にも使用された。
シャトルは再使用型宇宙往還機であり、軌道船 (Orbitor Vehicle, OV)、外部燃料タンク (External Tank, ET)、固体燃料補助ロケット (Solid Rocket Booster, SRB) の三つの部分によって構成されている。ETとSRBは上昇中に切り離され、軌道船 (OV) のみが地球周回軌道に到達する。発射時には機体は通常のロケットと同じように垂直に打ち上げられるが、軌道船は水平に滑空して帰還・着陸し、再使用のために整備された。SRBはパラシュートで海に降下し、回収船で回収されて整備した後、推進剤を再充填して再利用された。
構造・飛行等の概略[編集]
まずシャトルの構造および打ち上げ〜着陸の概略を説明する。
通常は5名から7名の飛行士が搭乗した。なお、最も初期の頃に行われた、STS-1からSTS-4の4回の試験飛行のように、機長と操縦士の2名だけでも飛行できた。
発射時のシャトルの構成は、おおまかに
- オレンジ色の外部燃料タンク (External Tank, ET)
- 2本の白色で細長い固体燃料補助ロケット (Solid Rocket Boosters, SRB)
- 宇宙飛行士と貨物を搭載する軌道船 (Orbiter Vehicle,OV)
の三つの部分から構成されていた。なお、上記に加えて、STSのために開発された、PAMとIUSと呼ばれる人工衛星打上げ用の2種類の固体ロケットを用いれば、搭載物をさらに高い軌道に運ぶこともできた。なお、シャトルには全体でおよそ250万個もの部品が使われており、人間がこれまでに製造した中で最も複雑な機械であると言われている。
シャトルは通常のロケットと同じように、発射台からは垂直に離陸する。その際の推力を生むのは2本のSRBおよび、(軌道船の後部に装着している)3基のメイン・エンジン (Space Shuttle Main Engine, SSME) であり、SSMEの推進剤(液体水素と液体酸素)は外部燃料タンクから供給される。上昇の手順はおおまかに、
- SRBも含めてすべてのロケットが噴射される第一段階
- SRBが役目を終えSSMEだけで推進する第二段階
のふたつに分かれていて、打上げからおよそ2分後に第二段階に移り、SRBは切り離され落下、パラシュートで海に着水し再使用のため船で回収される。機体(軌道船およびET)はその後も上昇を続け、軌道に到達するとSSMEが燃焼を停止し、ETも役目を終えて切り離される。切り離され自由落下を始めたET(巨大なオレンジ色のタンク)は通常は大気圏に再突入して空気抵抗と熱によって消滅する。ただし、様々な用途に使用することは、構想としてはあった。
軌道船はその後さらに軌道操縦システム (Orbital Maneuvering System, OMS) を噴射することでミッションの目標としている軌道へと向かう。軌道上での姿勢は、姿勢制御システム (Reaction Control System, RCS) を噴射することで制御する。
シャトルが従来の宇宙船とは際だって異なった特徴の一つに、軌道船の胴体部分のほとんどを占めるほどの大きさの貨物搭載室を備えていることと、そこに大きな観音開きのドアがついていることである。これによって、飛行士や宇宙ステーションの建設資材などを、地球周回低軌道や大気圏上層部、さらには熱圏などに運ぶことができた。例えば、ハッブル宇宙望遠鏡のような大きなものを搭載し軌道に投入することや故障した衛星などがあれば、その軌道へ向かい、貨物室に回収して地球に持ち帰ったりすることもできた。
任務が終了すると、軌道船はOMSを逆噴射して速度を落とし大気圏に再突入した。降下している間、シャトルは大気の様々な層を通過し、主に空気抵抗を用いて機体の速度を極超音速状態から減速させる。大気圏下層部に到達し着陸態勢に入るとグライダーのように滑空飛行し、フライ・バイ・ワイヤ方式の操縦系統で油圧によって動翼を制御した。着陸の際には、長い滑走路が必要とされた。シャトルの形態は、帰還時に極超音速飛行および旅客機のような低速飛行の双方をしなければならない、という二律背反する要求を満たすために作られた妥協の産物であり、その結果として軌道船は着陸寸前には、普通の航空機には見られないような急激な降下(高い降下率)を経験することになる。
かさんだコストと危険性[編集]
当初は通常のロケットより一回あたりの飛行コストを安くできるという見込みでこの計画がスタートし製造されたが、実際の運用で発生した事故に対する安全対策により、当初の予想より保守費用が大きくなっていき、結果的に使い捨てロケットよりもコストが高くなった。(→#甘すぎた予測と膨らんだ費用と危険性)
呼称の指す範囲[編集]
「スペースシャトル」という言葉は、一般には軌道船(オービタ)の単体を指していることもある。シャトル(往復を繰り返すもの)という表現に合致しているのは基本的にオービタ部分であるし、形状という点でも、「シャトル」という用語の源となっている織物のシャトルと形が類似し連想させるのはオービタ単体であるからである。ただし技術的な観点、つまり宇宙飛行システム、飛行に必要な技術的な要素、という意味では、軌道船以外にも外部燃料タンク・固体燃料補助ロケットが結合されて、はじめてシャトルは完成状態となり飛行可能となるので、NASAのエンジニアなどは三つが合体した状態を「スペースシャトル」と呼ぶ。そして、紛らわしさを避けるために「オービタ」「SRB」「ET」などの呼称を用いて呼び分けている。
完成状態にする作業はスペースシャトル組立棟で行われる。なお、この建物は元々はシャトルのものではなく、アポロ計画のサターン5型ロケットを組み立てるために作られたものである。
「スペースシャトル」という用語で、スペースシャトルをコアとした計画全体(スペースシャトル計画)を指して用いられていることもある。
計画・設計・製造[編集]
計画の初期段階[編集]
シャトルの設計と製造は1970年代初頭に始まったが、その概念はそれより20年も前、1960年代のアポロ計画よりも早い段階に存在していた。宇宙から宇宙船を水平に着陸させるという構想は1954年に国立航空諮問委員会(NACA)が描いていたもので、それは後にX-15航空工学実験調査機として実現することになった。NACAに対してこの提案を行ったのは、ヴァルター・ドルンベルガーである。
1957年、X-15をさらに発展させたXシリーズ宇宙往還機計画が提案された。宇宙飛行士ニール・アームストロングはX-15とX-20両方のテスト・パイロットに選抜されたが、X-20は計画されただけで実機が飛行することはなかった。
X-20は実現されなかったが、同様のコンセプトを持つHL-10実験機は数年後に開発され、1966年1月にNASAの元へと届けられた。HLとは、「Horizontal Landing(水平着陸)」の意味である。
1960年代半ば、空軍は次世代宇宙輸送システムに関する一連の極秘調査計画を行い、「一部再使用型の宇宙船こそが最も安上がりな方法だ」と判断した。彼らの提案では、使い捨て型の宇宙船とロケット(クラスI)の開発に直ちに取りかかり、それに続いて一部再使用型(クラスII)の開発を続け、最終的には完全再使用型(クラスIII)に達するべきである、とされた。1967年、NASA長官ジョージ・ミューラー (George Mueller) は幹部80人を集め、将来的な選択肢に関する1日間の討論会を開催した。会議では、初期の頃の空軍のX-20計画を含む様々な提案がなされた。
1968年、NASAは地球と宇宙を往復することを目的とした「統合往還機 (Integrated Launch and Re-entry Vehicle, ILRV)」の研究を開始し、同時に複数の企業に対してメイン・エンジン (SSME) の開発を競わせた。ヒューストンとハンツビルにあるNASAの事務局は共同で、宇宙に貨物を運ぶだけでなく大気圏を滑空して地球に帰還できるような宇宙船の設計を公募した。その中の一つに、巨大なロケットと小型の軌道船によって構成されたDC-3と呼ばれた案があった。
1969年、ニクソン大統領はスペースシャトル計画を進行させることを正式に決定した。
1973年8月、X-24Bが飛行に成功したことにより、大気圏に再突入した宇宙船が水平に着陸するのが可能であることが証明された。
開発・設計[編集]
スペースシャトルは、再使用することを目的に設計された宇宙船としては初めてのものである。シャトルは様々な搭載物を低軌道に運び、ISS(国際宇宙ステーション)の人員を交代させることができ、軌道船は地球を周回する人工衛星その他の物体を回収し地上に持ち帰ることもできるように設計された。各軌道船は「100回の飛行もしくは10年間の使用に耐えられるように」との考えで設計されたが、後にその期間は延長された。STS(宇宙輸送システム)の設計責任者は、マーキュリー計画、ジェミニ計画、アポロ計画などでも宇宙船の設計を担当したマキシム・ファゲット(英語版)である。軌道船の大きさや形状を決定する際の最も重要な要素となったのは、当時計画されていた商業衛星や秘密衛星の最大のサイズのものを搭載できるようにすることと、極軌道から一周回で離脱するという空軍の秘密計画に対応できるような飛行範囲を持っていることである。衛星を宇宙空間に配置するための高い搭載能力が欲しいという国防総省の要求、および再使用できる機器を持つ宇宙船を開発することによって宇宙開発予算を削減したいというニクソン政権の要求の双方に応えるため、固体燃料補助ロケットと使い捨て型の燃料タンクの併用という方式が選択された。
耐熱タイル[編集]
シャトル開発でひとつの大きな壁になったのが、大気圏に再突入時の熱からオービタを守り、繰り返し使用可能な熱シールドの開発である。オービタは機体を軽量にするために、基本的に航空機と同様のアルミニウムで出来ているが、アルミニウムはわずか200℃程度の温度で柔らかくなってしまい、大気圏再突入時に発生する1600℃以上の熱に耐える事は出来ない。そこで、1,260度C以下の部分へ断熱材として素材にシリカガラス繊維を用いた、再使用型高温用表面耐熱材(HRSI, High-temperature Reusable Surface Insulation、色は黒) と 繊維質耐火性コンポジット耐熱材(Fibrous Refractory Composite Insulation: FRCI、灰色) - 体積の94%が空気という超軽量耐熱タイルが開発された。シリカは熱を伝える速度が非常に遅いので、それを用いた耐熱タイルを用いれば機体のアルミを護ることができる。だが、まだ問題があった。機体のアルミは熱で膨張するのに対し、耐熱タイルのほうはほとんど膨張しない為、そのまま接着しては温度上昇とともに耐熱タイルは剥がれて脱落してしまう。試行錯誤が繰り返された結果、機体と耐熱タイルの間にフェルトをはさむ事で機体とタイルの膨張率の違いを受け止める方法が浮上した。これは特殊なフェルトではなく、カウボーイハットなどに用いられるごく普通のフェルトである。機体とフェルトと耐熱タイルの接着についても、アメリカの家庭にありふれた浴槽の防水コーキング用のゴムが接着剤として用いられた。耐熱タイルはHRSI 20,548枚とFRCI 2,945枚が、オービタの曲面を覆うため、部分ごとに形状の異なるものがジグソーパズルのように機体に貼り付けられた。1600℃以上が想定される部分には、強化炭素複合材(Reinforced Carbon Carbon: RCC、灰色)が開発され利用された。
素材選択や接着方法の開発が難航した耐熱タイルは、やはりスペースシャトルの弱点のひとつとなり、繰り返される飛行で何度も脱落を経験している。安全確保のため、帰還後に毎回タイルひとつひとつの状況や履歴を記録しつつ手作業で検査・修復しなければならず、シャトルの不安要因のひとつとしてつきまとうことになった。
製造[編集]
飛行可能な機体は6機製造された。1号機エンタープライズは宇宙に行けるようには作られてはおらず、もっぱら滑空試験のためのみに使用された。実用化されたのは、コロンビア、チャレンジャー、ディスカバリー、アトランティス、エンデバーの5機である。当初はエンタープライズも進入着陸試験が終了した後に実用機として改造される予定だったが、構造試験のために製造されたSTA-099をチャレンジャー (OV-099) に改造したほうが安上がりだと判断された。チャレンジャーは1986年、発射から73秒後に爆発事故を起こして機体が失われたため、機体構造の予備品として残っていたものを集めて新たにエンデバーが製作された。コロンビアは2003年に空中分解事故を起こして消滅した。
甘すぎた予測と膨らんだ費用と危険性[編集]
スペースシャトル計画の始まりの段階で、NASAの関係者には「一回の飛行あたり1200万ドルほどのコストで飛ばすことができる」などと主張する者もいて、そうした甘い見込みのもとに計画は進んでしまった。
シャトルを繰り返し安全に飛ばすため、再使用する機体の部品は飛行のたびに徹底的な検査が行われたが、シャトルを構成する膨大な数の部品の検査にかかる費用は巨額のものとなった。
エンデバーの製作にかかった費用は約17-18億ドルで、シャトルの一回の飛行にかかる費用は2002年の時点では約4億5,000万ドルだった。だが、コロンビアの事故以降は安全対策のコストが上昇し、2007年には1回の飛行につき約10億ドルを要するようになった。
スペースシャトルには技術的な困難だけでなく、官僚主義に侵されたNASAという巨大組織の抱える問題も影響した。チャレンジャー号の事故は予測・回避できた可能性が高かったにもかかわらず、NASAの幹部は「事故は起きないだろう」と充分な対策を行わず、米国が行った宇宙飛行中の事故では初の死者を出している。コロンビア号の事故においても、発射時の映像を確認した職員によって上昇中に剥離した断熱材がオービタに衝突した可能性が指摘されたものの、NASA幹部は提供された情報を軽視したという経緯がある。
政治学者のロジャー・A・ピールケ・Jr. (Roger A. Pielke, Jr.) は、2008年度初頭までにシャトル計画にかかった費用は総額で1,700億ドル(2008年度換算)ほどと算定した。これによれば打ち上げ一回あたりのコストは15億ドルということになる。
最終的には、スペースシャトルの計135回の打ち上げで2090億ドルもの費用がかかっていた。